Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Global challenges such as soil degradation and water scarcity necessitate sustainable agricultural practices, particularly in regions where saline water is increasingly used for irrigation. This study investigates the effects of four compost treatments, including surface-applied mulch compost (MC), Johnson–Su biologically active compost incorporated into soil (JCI), mulch compost incorporated into soil (MCI), and no compost as control (NC), on soil fertility, microbial activity, and Capsicum annuum (chili pepper) growth. Greenhouse experiments were conducted using soil from two different sites (New Mexico State University’s (NMSU) agricultural research plots and agricultural field-testing site at the Brackish Groundwater National Desalination Research Facility (BGNDRF) in Alamogordo, New Mexico) and two irrigation water salinities (brackish at ~3000 µS/cm and agricultural at ~800 µS/cm). The Johnson–Su compost treatment demonstrated superior performance, due to its high soil organic matter (41.5%), nitrate (NO3−) content (82.5 mg/kg), and phosphorus availability (193.1 mg/kg). In the JCI-treated soils, microbial biomass increased by 40%, and total microbial carbon reached 64.69 g/m2 as compared to 64.7 g/m2 in the NC. Plant growth parameters, including chlorophyll content, root length, and wet biomass, improved substantially with JCI. For instance, JCI increased plant height by 20% and wet biomass by 30% compared to NC treatments. The JCI treatment also effectively mitigated soil salinity, reducing Na+ accumulation by 60% and Cl− by 70% while enhancing water retention and soil structure. Principal Component Analysis (PCA) revealed a distinct clustering of JCI treatments, demonstrating its ability to increase nutrient retention and minimize salinity stress. These results indicate that biologically active properties, such as fungi-rich compost, are critical to providing an effective, environmentally resilient approach for enhancing soil fertility and supporting sustainable crop production under brackish groundwater irrigation, particularly in regions facing freshwater scarcity.more » « lessFree, publicly-accessible full text available April 1, 2026
-
This article advances geographic scholarship about conservation and protected areas (PAs) through a focuson biocultural geographies. Biocultural geographies derive from relationships between heterogenousIndigenous stewardship practices, biological diversity, and trans-scalar multidimensional social, political, andecological processes. The concept brings together insights from political ecology and biocultural conservationto address the interplay between environmental governance, cultural change, and biodiversity. We drawfrom collaborative, transdisciplinary research with Siona, Siekopai, and Cofan Indigenous communities inthe northern Ecuadorian Amazon, a site of global importance for its biodiversity and cultural heritage. Thisis also a region of rapid and extensive social-ecological change driven by expanding agricultural frontiers,intensifying extractive industries, and new infrastructure development for regional integration. It is from thiscontext that we call for a timely and critical conversation between human–environment geographers and thefield of biocultural conservation, two approaches that have reshaped thinking about PAs and the role ofIndigenous stewardship in an era of accelerating global challenges to social-ecological well-being. Data forour analysis derive from a multiyear study that investigates strategies used to ensure social-ecological well-being in the face of change. Our findings show that Siona, Siekopai, and Cofan stewardship sustains thebiological diversity that characterizes many Amazonian PAs through locally adapted institutions based onknowledge, innovation, and practices they collectively hold. Such stewardship advances self-determinationthat challenges conventional conservation and PA models by centering Indigenous territorial governance.more » « lessFree, publicly-accessible full text available June 23, 2026
-
This study explores the effects of alternating current-induced electromagnetic field (EMF) on mitigating brackish water irrigation and soil salinization impacts. Greenhouse experiments were conducted to evaluate the effect of EMF on plant growth, soil properties, and leaching of ions under different conditions, including using brackish water and desalinated water for irrigation and soil compost incorporation. The experiment was performed with four types of irrigation water using soil columns representing field soil layers. EMF-treated brackish water maintained a sodium adsorption ratio of 2.7 by leaching Na+ from the soil. EMF-treated irrigation columns showed an increase in soil organic carbon by 7% over no EMF-treated columns. Compost treatment reduced the leaching of NO3− from the soil by more than 15% using EMF-treated irrigation water. EMF-treated brackish water and compost treatment enhanced plant growth by increasing wet weight by 63.6%, dry weight by 71.4%, plant height by 22.8%, and root length by 115.8% over no EMF and compost columns. EMF-treated agricultural water without compost also showed growth improvements. The findings suggest that EMF treatment, especially combined with compost, offers an effective, low-cost, and eco-friendly solution to mitigate soil salinization, promoting plant growth by improving nutrient availability and soil organic carbon.more » « less
-
Increasing soil salinity and degraded irrigation water quality are major challenges for agriculture. This study investigated the effects of irrigation water quality and incorporating compost (3% dry mass in soil) on minimizing soil salinization and promoting sustainable cropping systems. A greenhouse study used brackish water (electrical conductivity of 2010 µS/cm) and agricultural water (792 µS/cm) to irrigate Dundale pea and clay loam soil. Compost treatment enhanced soil water retention with soil moisture content above 0.280 m3/m3, increased plant carbon assimilation by ~30%, improved plant growth by >50%, and reduced NO3− leaching from the soil by 16% and 23.5% for agricultural and brackish water irrigation, respectively. Compared to no compost treatment, the compost-incorporated soil irrigated with brackish water showed the highest plant growth by increasing plant fresh weight by 64%, dry weight by 50%, root length by 121%, and plant height by 16%. Compost treatment reduced soil sodicity during brackish water irrigation by promoting the leaching of Cl− and Na+ from the soil. Compost treatment provides an environmentally sustainable approach to managing soil salinity, remediating the impact of brackish water irrigation, improving soil organic matter, enhancing the availability of water and nutrients to plants, and increasing plant growth and carbon sequestration potential.more » « less
-
Abstract Understanding variation in food web structure over large spatial scales is an emerging research agenda in food web ecology. The density of predator–prey links in a food web (i.e., connectance) is a key measure of network complexity that describes the mean proportional dietary breadth of species within a food web. Connectance is a critical component of food web robustness to species loss: food webs with lower connectance have been shown to be more susceptible to secondary extinctions. Identifying geographic variation in food web connectance and its drivers may provide insight into community robustness to species loss. We investigated the food web connectance of ground-dwelling tropical forest mammal communities in multiple biogeographic regions to test for differences among regions in food web connectance and to test three potential drivers: primary productivity, contemporary anthropogenic pressure, and variation in mammal body mass distributions reflective of historical extinctions. Mammal communities from fifteen protected forests throughout the Neo-, Afro-, and Asian tropics were identified from systematic camera trap arrays. Predator–prey interaction data were collected from published literature, and we calculated connectance for each community as the number of observed predator–prey links relative to the number of possible predator–prey links. We used generalized linear models to test for differences among regions and to identify the site level characteristics that best predicted connectance. We found that mammal food web connectance varied significantly among continents and that body size range was the only significant predictor. More possible predator–prey links were observed in communities with smaller ranges in body size and therefore sites with smaller body size ranges had higher mean proportional dietary breadth. Specifically, mammal communities in the Neotropics and in Madagascar had significantly higher connectance than mammal communities in Africa. This geographic variation in contemporary mammalian food web structure may be the product of historical extinctions in the Late Quaternary, which led to greater losses of large-bodied species in the Neotropics and Madagascar thus contributing to higher average proportional dietary breadth among the remaining smaller bodied species in these regions.more » « less
-
Abstract Heterogeneous distributions are a fundamental principle of ecology, manifesting as natural variability within ecological levels of organization from individuals to ecosystems. In disease ecology, variability in biotic and abiotic factors can result in heterogeneous patterns of transmission and virulence—broadly defined here as the negative consequences of infection. Still, our classic theoretical understanding of disease dynamics comes from models that assume homogeneous transmission and virulence. Here, we test this assumption by assessing the contribution of various sources of individual and spatial heterogeneity to patterns of transmission and sublethal measurements of virulence in two lizard–malaria systems: a three‐parasite assemblage (Plasmodium floridense,Plasmodium leukocytica, andPlasmodium azurophilum) infecting the lizardAnolis gundlachiin the rainforest of Puerto Rico and a single‐parasite system (P. floridense–Anolis sagrei) in Florida. Using a Bayesian model selection framework, we evaluated whether individual host differences (i.e., body size and sex) or spatial variability (i.e., habitat type and local‐scale host spatial structure) drive heterogeneity in the probability of infection or its associated health costs (i.e., body condition, blood chemistry). We found that the probability of infection increases with increasing lizard body size in both systems. However, in Florida, we found the relationship to be subdued in deforested habitats compared to the adjacent urban hydric forests. Furthermore, infection was spatially clustered within sampling sites, with “hot” and “cold” spots across the landscape. Nevertheless, we found no clear evidence of costs of infection on lizard health in any of the measures assessed and hence no grounds for inference regarding heterogeneous virulence. Ultimately, the consistency of our results across systems suggests prominent roles of individual and spatial heterogeneities as driving factors of transmission of vector‐borne diseases.more » « less
-
Extreme climatic events (ECEs) such as hurricanes have been hypothesized to be a major driving force of natural selection. Recent studies argue that, following strong hurricane disturbance, Anolis lizards in the Caribbean undergo selection for traits such as longer forelimbs or smaller body sizes that improve their clinging ability to their substrates increasing their chances of surviving hurricane wind gusts. Some authors challenge the generalization of this hypothesis arguing that other mechanisms may explain these phenotypic changes or that they may not necessarily be generalizable across systems. To address this issue, we compared body size and relative forelimb length of Anolis gundlachi , a trunk–ground anole living in closed-canopy forests in Puerto Rico, before, four months after, and 15 months after Hurricanes Irma and Maria in 2017. Overall, our results show no clear evidence of a temporal decrease in body size or increase forelimb length (relative to body size) challenging the generalizability of the clinging ability hypothesis. Understanding how animals adapt to ECE is an emerging field. Still, we are quickly learning that this process is complex and nuanced.more » « less
-
High levels of within-individual variation (WIV) in reiterative components in plants such as leaves, flowers, and fruits have been shown to increase individual fitness by multiple mechanisms including mediating interactions with natural enemies. This relationship between WIV and fitness has been studied almost exclusively in plant systems. While animals do not exhibit conspicuous reiterative components, they have traits that can vary at the individual level such as erythrocyte size. It is currently unknown if WIV in animals can influence individual fitness by mediating the outcome of interactions with natural enemies as it has been shown in plants. To address this issue, we tested for a relationship between WIV in erythrocyte size, hemoparasite infection status, and body condition (a proxy for fitness) in a Caribbean anole lizard. We quantified the coefficient of variation of adult erythrocytes size in $n = 95$ infected and $n = 107$ non-infected lizards. We found higher degrees of erythrocyte size variation in infected lizards than in non-infected individuals. However, we found no significant relationship between infection status or erythrocyte size variation, and lizard body condition. These results suggest that higher WIV in erythrocyte size in infected lizards is not necessarily adaptive but likely a consequence of the host response to infection. Many hemoparasites destroy their host cells as part of their life cycle. To compensate, the host lizard may respond by increasing production of erythrocytes resulting in higher WIV. Our results emphasize the need to better understand the role of within-animal variation as a neglected driver or consequence of ecological and evolutionary interactions.more » « less
An official website of the United States government
